Tiêu chuẩn TCVN 6165:2009 Khái niệm từ vựng quốc tế về đo lường học

  • Thuộc tính
  • Nội dung
  • Tiêu chuẩn liên quan
  • Lược đồ
  • Tải về
Mục lục
Tìm từ trong trang
Tải văn bản
Lưu
Theo dõi hiệu lực VB

Đây là tiện ích dành cho thành viên đăng ký phần mềm.

Quý khách vui lòng Đăng nhập tài khoản LuatVietnam và đăng ký sử dụng Phần mềm tra cứu văn bản.

Báo lỗi
  • Báo lỗi
  • Gửi liên kết tới Email
  • Chia sẻ:
  • Chế độ xem: Sáng | Tối
  • Thay đổi cỡ chữ:
    17
Tình trạng hiệu lực: Đã biết
Hiệu lực: Đã biết
Tình trạng: Đã biết

TIÊU CHUẨN QUỐC GIA

TCVN 6165:2009

ISO/IEC GUIDE 99:2007

TỪ VỰNG QUỐC TẾ VỀ ĐO LƯỜNG HỌC – KHÁI NIỆM, THUẬT NGỮ CHUNG VÀ CƠ BẢN (VIM)

International vocabulary of metrology – basic and general concepts and associated terms (vim)

Lời nói đầu

TCVN 6165:2009 thay thế cho TCVN 6165:1996 (VIM 1993);

TCVN 6165:2009 hoàn toàn tương đương với ISO/IEC Guide 99:2007;

TCVN 6165:2009 do Ban kỹ thuật Tiêu chuẩn Quốc gia TCVN/TC 12 Đại lượng và đơn vị đo biên soạn, Tổng cục Tiêu chuẩn Đo lường Chất lượng đề nghị, Bộ Khoa học và Công nghệ công bố.

Lời giới thiệu

0.1. Tổng quát

Nói chung, từ vựng là “từ điển về thuật ngữ, bao gồm tên gọi và định nghĩa của một hay một số lĩnh vực cụ thể” (ISO 1087-1:2000, 3.7.2). Tiêu chuẩn từ vựng này liên quan đến đo lường học, “khoa học về phép đo và việc áp dụng chúng”. Tiêu chuẩn này cũng bao gồm các nguyên tắc chi phối đại lượng và đơn vị. Có thể tiếp cận lĩnh vực đại lượng và đơn vị theo theo nhiều cách khác nhau. Điều 1 của tiêu chuẩn này là một trong các cách tiếp cận đó, dựa trên cơ sở các nguyên tắc đã trình bày trong những phần khác nhau của TCVN 6398, Đại lượng và đơn vị, đã và đang được thay thế bằng bộ tiêu chuẩn TCVN 7870 Đại lượng và đơn vị, và trong Sổ tay về SI, Hệ đơn vị quốc tế, (do BIPM xuất bản).

Phiên bản thứ hai của Từ vựng quốc tế các thuật ngữ chung và cơ bản trong đo lường học (VIM) đã được xuất bản năm 1993. Trước hết là sự cần thiết phải đề cập tới các phép đo trong hóa học và y học phòng thí nghiệm, cũng như sự cần thiết phải đưa vào các khái niệm liên quan tới tính liên kết chuẩn đo lường, độ không đảm bảo đo và các tính chất danh nghĩa, đã dẫn đến phiên bản ba, với tên gọi Từ vựng quốc tế về đo lường học – Khái niệm, thuật ngữ chung và cơ bản (VIM), nhằm nhấn mạnh vai trò hàng đầu của các khái niệm trong việc xây dựng từ vựng.

Tiêu chuẩn này đã xem như không có sự khác nhau cơ bản về những nguyên tắc cơ bản của các phép đo trong vật lý, hóa học, y học phòng thí nghiệm, sinh học hoặc kỹ thuật. Hơn nữa, đã có sự cố gắng để đáp ứng nhu cầu về khái niệm của phép đo trong các lĩnh vực như sinh hóa, khoa học thực phẩm, khoa học pháp y và sinh học phân tử.

Một số khái niệm đề cập trong phiên bản thứ hai của VIM không được đề cập trong phiên bản ba này vì chúng không còn được xem là chung hoặc cơ bản nữa. Ví dụ, khái niệm “thời gian đáp ứng”, dùng để mô tả trạng thái tức thời của một hệ thống đo, không có nữa. Phiên bản ba của VIM cũng không đề cập đến các khái niệm liên quan đến thiết bị đo, nên cần tham khảo các bản từ vựng khác như IEC 60050, Từ vựng kỹ thuật điện quốc tế, IEV. Đối với những khái niệm về quản lý chất lượng, thỏa thuận công nhận lẫn nhau liên quan đến đo lường học, hoặc đo lường pháp định, cần tra cứu các tài liệu cho trong Thư mục tài liệu tham khảo.

Việc xây dựng tiêu chuẩn này đã nêu lên một số vấn đề cơ bản về các triết lý và sự mô tả khác nhau hiện nay đối với các phép đo như sẽ tóm tắt dưới đây. Sự khác nhau này đôi khi dẫn đến các khó khăn trong việc xây dựng những định nghĩa có thể được sử dụng qua các mô tả khác nhau. Trong tiêu chuẩn này không có sự ưu tiên cho bất cứ cách tiếp cận cụ thể nào.

Sự thay đổi trong việc tiếp cận độ không đảm bảo đo từ Cách tiếp cận sai số (đôi khi gọi là Cách tiếp cận truyền thống hoặc Cách tiếp cận giá trị thực) đến Cách tiếp cận độ không đảm bảo yêu cầu phải xem xét lại một số khái niệm liên quan đang có ở TCVN 6165:1999. Mục đích của phép đo trong Cách tiếp cận sai số là xác định một ước lượng của giá trị thực gần với giá trị thực đó đến mức có thể. Độ lệch khỏi giá trị thực gồm sai số ngẫu nhiên và sai số hệ thống. Hai loại sai số, được thừa nhận là luôn luôn có thể phân biệt được, phải được tiếp cận khác nhau. Không thể đưa ra quy tắc về cách thức kết hợp để tạo thành sai số tổng của một kết quả đo đã cho, thường được lấy như là một ước lượng. Thông thường, chỉ giới hạn trên của giá trị tuyệt đối của sai số tổng được ước lượng, đôi khi được gọi một cách không chặt chẽ là “độ không đảm bảo”.

Trong Khuyến nghị CIPM INC-1 (1980) về Trình bày độ không đảm bảo, đã đề nghị các thành phần của độ không đảm bảo đo cần  được nhóm lại thành hai loại, Loại A và Loại B, tùy theo việc đánh giá bằng phương pháp thống kê hoặc phương pháp khác, và chúng được kết hợp lại để tạo thành một phương sai theo các quy tắc của lý thuyết toán xác suất cũng bằng cách xử lý các Thành phần loại B theo phương sai. Độ lệch chuẩn thu được là sự thể hiện của độ không đảm bảo đo. Quan điểm về Cách tiếp cận độ không đảm bảo được nêu chi tiết trong Hướng dẫn trình bày độ không đảm bảo đo (GUM) (1993, sửa chữa và in lại năm 1995) tập trung vào việc xử lý toán học độ không đảm bảo đo thông qua một mô hình đo rõ ràng với giả thiết là đại lượng đo có thể được đặc trưng bằng một giá trị cơ bản duy nhất. Hơn nữa, trong GUM cũng như trong các tài liệu của IEC, hướng dẫn được đưa ra về Cách tiếp cận độ không đảm bảo trong trường hợp giá trị đọc đơn của phương tiện đo đã được hiệu chuẩn, một tình huống thường gặp trong đo lường công nghiệp.

Mục đích của phép đo trong cách tiếp cận theo độ không đảm bảo không phải là xác định giá trị thực gần nhất đến mức có thể. Đúng hơn là giả định rằng thông tin từ phép đo chỉ cho phép ấn định một khoảng các giá trị hợp lý cho đại lượng đo trên cơ sở cho rằng không có các sai lầm khi thực hiện phép đo. Thông tin liên quan bổ sung thêm có thể rút ngắn phạm vi của khoảng giá trị có thể quy cho đại lượng đo một cách hợp lý. Tuy nhiên, ngay cả phép đo tinh vi nhất cũng không thể giảm khoảng này tới một giá trị đơn vì số lượng hạn chế về chi tiết trong định nghĩa đại lượng đo. Do đó, độ không đảm bảo theo định nghĩa tạo ra giới hạn tối thiểu của một độ không đảm bảo đo nào đó. Khoảng có thể được đại diện bằng một trong các giá trị của nó, gọi là “giá trị đại lượng đo được”.

Trong GUM, độ không đảm bảo định nghĩa được xem là không đáng kể so với các thành phần khác của độ không đảm bảo đo. Mục đích của phép đo là thiết lập một xác suất để giá trị duy nhất cơ bản này nằm trong một khoảng của các giá trị đại lượng đo được, trên cơ sở thông tin có được từ phép đo.

Phương pháp của IEC tập trung vào phép đo có giá trị đọc đơn, cho phép phát hiện các đại lượng có thay đổi theo thời gian hay không bằng cách chứng minh các kết quả đo có thể so sánh hay không. Quan điểm của IEC cũng cho độ không đảm bảo về định nghĩa là đáng kể. Sự thay đổi của kết quả đo phụ thuộc nhiều vào các đặc trưng đo lường của phương tiện đo như đã được chứng minh bằng việc hiệu chuẩn nó. Khoảng giá trị đưa ra để mô tả đại lượng đo là khoảng giá trị của chuẩn đo lường đã cho các số chỉ như nhau.

Trong GUM, khái niệm giá trị thực được giữ lại để mô tả mục đích của phép đo, nhưng tính từ “thực” được xem là không cần thiết. IEC không sử dụng khái niệm để mô tả mục đích này. Trong tiêu chuẩn này, khái niệm và thuật ngữ được giữ lại vì việc sử dụng chung và tầm quan trọng của khái niệm.

0.2. Lịch sử VIM

Năm 1997 Uỷ ban chung về các hướng dẫn trong đo lường học (JCGM), do Giám đốc BIPM làm Chủ tịch, được bảy tổ chức quốc tế thành lập, đã soạn thảo một phiên bản gốc Hướng dẫn trình bày độ không đảm bảo đo (GUM) và Từ vựng quốc tế về các thuật ngữ chung và cơ bản trong đo lường học (VIM). Uỷ ban chung này đã nhận phần công việc này từ Nhóm tư vấn kỹ thuật 4 của ISO (TAG 4), Uỷ ban đã xây dựng GUM và VIM. Đầu tiên, Uỷ ban chung đã được thành lập gồm các đại diện của Viên cân đo quốc tế (BIPM), Ủy ban kỹ thuật điện quốc tế (IEC), Liên đoàn quốc tế về hóa học y học và y học phòng thí nghiệm (IFCC), Tổ chức tiêu chuẩn hóa quốc tế (ISO), Liên đoàn quốc tế về hóa học tinh khiết và ứng dụng (IUPAC), Liên đoàn quốc tế về vật lý thuần túy và ứng dụng (IUPAP), và Tổ chức quốc tế về đo lường pháp định (OlML). Năm 2005, Tổ chức công nhận phòng thí nghiệm quốc tế (ILAC) chính thức tham gia cùng với bảy tổ chức quốc tế sáng lập trên.

JCGM có hai nhóm công tác. Nhóm công tác 1 (JCGM/WG 1) về GUM có nhiệm vụ thúc đẩy việc sử dụng GUM và soạn thảo các phần bổ sung của GUM cho việc áp dụng rộng rãi. Nhóm công tác 2 (JCGM/WG 2) về VIM có nhiệm vụ soát xét VIM và thúc đẩy việc sử dụng. Nhóm công tác 2 được thành lập gồm 2 đại diện của mỗi tổ chức thành viên, và được bổ sung một số lượng nhất định các chuyên gia. Nhóm công tác 2 đã soạn thảo tiêu chuẩn này.

Năm 2004, dự thảo đầu tiên phiên bản thứ ba của VIM được đưa để lấy ý kiến và các đề xuất của tám tổ chức đại diện trong JCGM, trong hầu hết các trường hợp các tổ chức này đã hỏi ý kiến các thành viên và hội viên, bao gồm rất nhiều Viện đo lường quốc gia. Các ý kiến đã được nghiên cứu và thảo luận, được tính đến khi thích hợp, và được JCGM/WG 2 trả lời. Năm 2006 dự thảo cuối được trình lên tám tổ chức để xem xét và phê duyệt.

Tất cả các ý kiến đóng góp tiếp theo được Nhóm công tác 2 xem xét và tính đến khi thích hợp.

Tiêu chuẩn này đã được từng tổ chức thành viên và tất cả tám tổ chức thành viên của JCGM phê duyệt.

Các quy ước

Quy tắc thuật ngữ

Các định nghĩa và thuật ngữ trong phiên bản ba cũng như sự sắp xếp chúng tuân thủ tối đa những quy tắc của thuật ngữ học, như trình bày trong ISO 704, ISO 1087-1 và ISO 10241. Đặc biệt áp dụng nguyên tắc thay thế; đó là, trong một định nghĩa nào đó có thể thay thế một thuật ngữ đưa đến một khái niệm được định nghĩa ở một chỗ khác trong VIM bằng định nghĩa tương ứng với thuật ngữ đó, mà không tạo ra sự mâu thuẫn hoặc vòng quanh.

Các khái niệm được trình bày trong năm chương và được sắp xếp hợp lý trong mỗi chương.

Trong một số định nghĩa, việc sử dụng các khái niệm không được định nghĩa (còn gọi là “nguyên thủy”) là không thể tránh được. Trong tiêu chuẩn này, những khái niệm không được định nghĩa như thế bao gồm: hệ thống, thành phần, hiện tượng, vật thể, chất, tính chất, quy chiếu, thực nghiệm, kiểm tra, độ lớn, vật liệu, thiết bị và tín hiệu.

Để dễ dàng hiểu các mối liên hệ khác nhau giữa những khái niệm không giống nhau, sơ đồ về khái niệm đã được trình bày ở Phụ lục A.

Số tra cứu

Các khái niệm xuất hiện trong cả hai phiên bản thứ hai và thứ ba có một số tra cứu kép, số tra cứu phiên bản ba in đậm, và số tra cứu phiên bản hai được cho trong hoặc đơn không in đậm.

Đồng nghĩa

Chấp nhận có nhiều tên gọi thuật ngữ cho cùng một khái niệm. Nếu có nhiều thuật ngữ được cho, thuật ngữ thứ nhất là ưu tiên, và được sử dụng ở mọi nơi khi có thể.

Chữ đậm

Thuật ngữ dùng cho khái niệm được định nghĩa in chữ đậm. Trong phần lời của một đoạn xác định, thuật ngữ của các khái niệm đã được định nghĩa ở chỗ khác trong VIM cũng được in bằng chữ đậm lần đầu nó xuất hiện.

Dấu hiệu trích dẫn

Trong phần lời của tiêu chuẩn này, dấu hiệu trích dẫn đơn (‘…’) bao quanh thuật ngữ thể hiện một khái niệm trừ khi nó là chữ đậm. Dấu hiệu trích dẫn kép (“…”) chỉ dùng khi thuật ngữ được xem xét hoặc cho một trích dẫn.

Ký hiệu thập phân

Ký hiệu thập phân trong Tiếng Anh là dấu chấm trên cùng dòng và trong tiếng Việt là dấu phẩy trên cùng dòng.

Ký hiệu tương đương về định nghĩa

Ký hiệu := có nghĩa là “theo định nghĩa bằng” như cho trong bộ tiêu chuẩn TCVN 7870.

Khoảng

Thuật ngữ “khoảng” được dùng với kí hiệu [a;b] có nghĩa là tập hợp các số thực x mà với nó a ≤ x ≤ b, ở đây a và b > a là các số thực. Thuật ngữ “khoảng” ở đây dùng cho “khoảng đóng”. Ký hiệu a và b có nghĩa là “điểm cuối” của khoảng [a;b].

Ví dụ [-4;2]

Hai điểm 2 và -4 của khoảng [-4;2] có thể trình bày là -1 ± 3. Sự diễn tả sau không có nghĩa là khoảng [-4;2]; Tuy nhiên, -1 ± 3 thường được dùng để chỉ khoảng [-4;2].

Phạm vi của khoảng

Phạm vi

Phạm vi của khoảng [a;b] là hiệu b – a và được diễn tả bằng r[a;b].

Ví dụ: r[-4;2] = 2 – (-4) = 6

CHÚ THÍCH: Thuật ngữ “quãng” đôi khi được dùng cho khái niệm này.

TỪ VỰNG QUỐC TẾ VỀ ĐO LƯỜNG HỌC – KHÁI NIỆM, THUẬT NGỮ CHUNG VÀ CƠ BẢN (VIM)

International vocabulary of metrology – basic and general concepts and associated terms (vim)

Phạm vi áp dụng

Trong tiêu chuẩn này, tập hợp các định nghĩa và thuật ngữ kèm theo của hệ thống các khái niệm chung và cơ bản dùng trong đo lường học được cho bằng tiếng Anh và tiếng Việt, cùng với sơ đồ khái niệm để thể hiện mối liên quan của chúng. Thông tin bổ sung được cho trong các ví dụ và chú thích của nhiều định nghĩa.

Tiêu chuẩn này có ý nghĩa tham chiếu chung cho các nhà khoa học và kỹ thuật – bao gồm các nhà vật lý, hóa học, y học – cũng như người giảng dạy và thực hành liên quan đến việc hoạch định hoặc thực hiện các phép đo, với mọi mức độ của độ không đảm bảo đo và trong bất kỳ lĩnh vực áp dụng này. Tiêu chuẩn này cũng có ý nghĩa tham chiếu cho các cơ quan chính phủ và liên chính phủ, các hiệp hội thương mại, tổ chức công nhận, các nhà quản lý và các hội nghề nghiệp.

Các khái niệm được sử dụng trong những cách tiếp cận khác nhau để mô tả phép đo cùng được giới thiệu. Các tổ chức thành viên của JCGM có thể chọn khái niệm và định nghĩa theo các thuật ngữ tương ứng. Tuy nhiên, mục đích của tiêu chuẩn này là thúc đẩy sự hài hòa toàn cầu về thuật ngữ sử dụng trong đo lường học.

1. Đại lượng và đơn vị

1.1. (1.1)

Đại lượng

Tính chất của một hiện tượng, vật thể hoặc chất mà độ lớn có thể được biểu thị bằng một số và một mốc quy chiếu.

CHÚ THÍCH 1: Khái niệm “đại lượng” nói chung có thể phân ra theo một số mức độ của các khái niệm cụ thể như trình bày trong bảng sau. Phía bên trái của bảng trình bày các khái niệm cụ thể của ‘đại lượng’. Đây là các khái niệm chung cho những đại lượng riêng biệt ở cột bên phải.

Độ dài, l

Bán kính, r

Bán kính của vòng trong A, rA hoặc r(A)

Bước sóng, λ

Bước sóng của bức xạ natri D, λD hoặc λ(D;Na)

Năng lượng, E

Động năng, T

Động năng của hạt i trong một hệ đã cho, Ti

Nhiệt năng, Q

Nhiệt lượng của một mẫu hơi nước i, Qi

Điện tích, Q

Điện tích của proton, e

Điện trở, R

Điện trở của một điện trở i trong một mạch đã cho, Ri

Nồng độ lượng chất của thực thể B, cB

Nồng độ lượng chất của ethanol trong mẫu rượu i, ci(C2H5OH)

Nồng độ số lượng của thực thể B, CB

Nồng độ số lượng của erythrocyte trong mẫu máu i, C(Erc; Sgi)

Độ cứng Rockwell C (tải 150 kg), HRC (150 kg)

Độ cứng Rockwell C của mẫu thép i, HRCi (150 kg)

CHÚ THÍCH 2: Mốc quy chiếu có thể là đơn vị đo, thủ tục đo, mẫu chuẩn hoặc một kết hợp của chúng.

CHÚ THÍCH 3: Ký hiệu của đại lượng cho trong bộ tiêu chuẩn TCVN 7870 Đại lượng và đơn vị. Ký hiệu của các đại lượng được viết kiểu chữ nghiêng. Một ký hiệu đã cho có thể chỉ các đại lượng khác nhau.

CHÚ THÍCH 4: Cách thức ưu tiên của IUPAC – IFCC đưa ra để ấn định các đại lượng trong phòng thí nghiệm y học là “Hệ thống – Thành phần; loại đại lượng”.

VÍ DỤ: “Huyết tương (Máu) – Ion natri; nồng độ lượng chất bằng 143 mmol/l trong người ở một thời điểm xác định”.

CHÚ THÍCH 5: Đại lượng như được định nghĩa ở đây là vô hướng. Tuy nhiên vectơ hoặc tenxơ cũng được xem là đại lượng nếu các thành phần của nó là đại lượng.

CHÚ THÍCH 6: Khái niệm ‘đại lượng’ nói chung có thể phân ra thành, ví dụ ‘đại lượng vật lý’, ‘đại lượng hóa học’ và ‘đại lượng sinh học’ hoặc đại lượng cơ bản đại lượng dẫn xuất.

1.2. (1.1, Chú thích 2)

Loại đại lượng

Loại

Mặt chung của các đại lượng có thể so sánh với nhau.

CHÚ THÍCH 1: Sự phân chia khái niệm ‘đại lượng’ theo ‘loại đại lượng’ ở một mức độ nào đó có tính chất tùy ý.

VÍ DỤ 1: Các đại lượng đường kính, chu vi và bước sóng, nói chung đều được xem là đại lượng cùng loại, cụ thể là thuộc loại đại lượng độ dài.

VÍ DỤ 2: Các đại lượng nhiệt lượng, động năng và thế năng, nói chung đều được xem là đại lượng cùng loại, cụ thể là thuộc loại đại lượng năng lượng.

CHÚ THÍCH 2: Các đại lượng cùng loại trong một hệ đại lượng đã cho có cùng thứ nguyên. Tuy nhiên các đại lượng cùng thứ nguyên không nhất thiết là cùng loại.

VÍ DỤ: Đại lượng mômen lực và năng lượng theo quy ước không là đại lượng cùng loại, tuy vậy chúng lại có cùng thứ nguyên. Tương tự, nhiệt dung và entropy, số các thực thể, độ thấm tương đối, tỷ khối cũng có cùng thứ nguyên mặc dù không cùng loại.

1.3. (1.2)

Hệ đại lượng

Tập hợp các đại lượng cùng với một tập hợp các phương trình không mâu thuẫn nhau liên kết các đại lượng đó.

CHÚ THÍCH: Các đại lượng thứ tự, như độ cứng Rockwell C, thường không được xem là một bộ phận của hệ đại lượng vì chúng quan hệ với các đại lượng khác chỉ thông qua mối liên hệ thực nghiệm.

1.4. (1.3)

Đại lượng cơ bản

Đại lượng thuộc một tập hợp nhỏ được chọn theo quy ước của một đại lượng đã cho, trong đó đại lượng không thuộc tập hợp nhỏ có thể diễn đạt theo các đại lượng khác.

CHÚ THÍCH 1: Tập hợp nhỏ nêu trong định nghĩa được gọi là “tập hợp các đại lượng cơ bản”.

VÍ DỤ Tập hợp các đại lượng cơ bản trong Hệ đại lượng quốc tế (ISQ) được cho ở 1.6.

CHÚ THÍCH 2: Các đại lượng cơ bản là độc lập với nhau vì một đại lượng cơ bản không thể được biểu diễn như là tích lũy thừa của các đại lượng cơ bản khác.

CHÚ THÍCH 3: ‘Số các thực thể’ có thể coi là đại lượng cơ bản trong bất cứ hệ đại lượng nào.

1.5. (1.4)

Đại lượng dẫn xuất

Đại lượng trong một hệ đại lượng được định nghĩa theo các đại lượng cơ bản của hệ đó.

VÍ DỤ: Trong hệ đại lượng có đại lượng cơ bản là độ dài và khối lượng, khối lượng riêng là đại lượng dẫn xuất được định nghĩa là tỷ số giữa khối lượng và thể tích (độ dài lũy thừa ba).

1.6.

Hệ đại lượng quốc tế

ISQ

Hệ đại lượng dựa trên bảy đại lượng cơ bản: độ dẫn, khối lượng, thời gian, cường độ dòng điện, nhiệt độ nhiệt động lực, lượng chất, và cường độ sáng.

CHÚ THÍCH 1: Hệ đại lượng này được công bố trong bộ tiêu chuẩn TCVN 7870 Đại lượng và đơn vị.

CHÚ THÍCH 2: Hệ đơn vị quốc tế (SI) (xem 1.16) dựa trên ISQ.

1.7. (1.5)

Thứ nguyên đại lượng

Thứ nguyên của đại lượng

Thứ nguyên

Biểu thị sự phụ thuộc của một đại lượng vào các đại lượng cơ bản của hệ đại lượng như là tích lũy thừa của các thừa số tương ứng với đại lượng cơ bản, bỏ qua mọi thừa số bằng số.

VÍ DỤ 1: Trong ISQ, thứ nguyên đại lượng của lực được biểu thị bằng dim F = LMT-2.

VÍ DỤ 2: Trong hệ đại lượng trên dim  là thứ nguyên đại lượng của nồng độ khối lượng của thành phần B và ML-3 cũng là đại lượng thứ nguyên đại lượng của khối lượng riêng, (khối lượng theo thể tích).

VÍ DỤ 3: Chu kỳ T của một con lắc có độ dài l ở một địa điểm có gia tốc rơi tự do g là

hoặc

Trong đó

Từ đó, dim

CHÚ THÍCH 1: Lũy thừa của một thừa số là thừa số đó đã được nâng lên số mũ. Mỗi thừa số là một thứ nguyên của đại lượng cơ bản.

CHÚ THÍCH 2: Thể hiện ký hiệu quy ước thứ nguyên của đại lượng cơ bản là chữ in hoa thẳng đứng có chân. Thể hiện ký hiệu quy ước thứ nguyên của đại lượng dẫn xuất là tích lũy thừa thứ nguyên của các đại lượng cơ bản theo định nghĩa của đại lượng dẫn xuất. Thứ nguyên của đại lượng Q được biểu thị là dim Q.

CHÚ THÍCH 3: Khi suy ra thứ nguyên của đại lượng, không cần quan tâm đến đặc trưng vô hướng, vectơ hoặc tenxơ của nó.

CHÚ THÍCH 4: Trong một số đại lượng đã cho,

- các đại lượng cùng loại có, cùng thứ nguyên;

- các đại lượng có thứ nguyên khác nhau luôn luôn là các đại lượng khác loại, và

- các đại lượng cùng thứ nguyên không nhất thiết là cùng loại.

CHÚ THÍCH 5: Ký hiệu thể hiện thứ nguyên của các đại lượng cơ bản trong ISQ là:

Đại lượng cơ bản

Ký hiệu thứ nguyên

Độ dài

Khối lượng

Thời gian

Cường độ dòng điện

Nhiệt độ nhiệt động lực

Lượng chất

Cường độ sáng

L

M

T

I

N

J

Như vậy, thứ nguyên của đại lượng Q được biểu thị bằng dim , trong đó các số mũ, gọi là số mũ thứ nguyên, là âm, dương hoặc không.

1.8. (1.6)

Đại lượng thứ nguyên một

Đại lượng không thứ nguyên

Đại lượng mà tất cả số mũ của các thừa số tương ứng với đại lượng cơ bản trong thứ nguyên đại lượng của nó bằng không.

CHÚ THÍCH 1: Thuật ngữ “đại lượng không thứ nguyên” nói chung được dùng và nêu ở đây là do những nguyên nhân lịch sử. Xuất phát từ thực tế là sự thể hiện ký hiệu thứ nguyên của các đại lượng đó tất cả số mũ đều bằng không. Thuật ngữ “đại lượng thứ nguyên một” phản ánh quy ước trong đó thể hiện ký hiệu cho thứ nguyên của các đại lượng như vậy là ký hiệu 1 (xem TCVN 6398-0: 1992, 2.2.6).

CHÚ THÍCH 2: Đơn vị đo và giá trị của đại lượng có thứ nguyên một là các số, nhưng những đại lượng đó mang nhiều thông tin hơn là một con số.

CHÚ THÍCH 3: Một số đại lượng thứ nguyên một được định nghĩa là tỷ số của hai đại lượng cùng loại.

VÍ DỤ: Góc phẳng, góc khối, chiết suất, độ thấm tương đối, tỷ khối, hệ số ma sát, số Mach.

CHÚ THÍCH 4: Số các thực thể  là đại lượng thứ nguyên một.

VÍ DỤ: Số vòng của một cuộn dây, số phân tử trong một mẫu đã cho, sự suy biến các mức năng lượng của một hệ thống lượng tử.

1.9. (1.7)

Đơn vị đo

Đơn vị của phép đo

Đơn vị

Đại lượng thực vô hướng, được định nghĩa và thừa nhận theo quy ước mà mọi đại lượng cùng loại khác có thể được so sánh với nó để biểu diễn tỷ số của hai đại lượng bằng một số.

CHÚ THÍCH 1: Đơn vị đo được thể hiện bằng tên và ký hiệu được ấn định theo quy ước.

CHÚ THÍCH 2: Đơn vị đo của các đại lượng cùng thứ nguyên có thể được thể hiện bằng tên và ký hiệu như nhau cả khi các đại lượng đó không cùng loại. Ví dụ, jun trên kenvin, J/K, là tên và ký hiệu của đơn vị đo nhiệt dung và đơn vị đo entropy là hai đại lượng không được xem là cùng loại. Tuy nhiên, trong một số trường hợp tên riêng của đơn vị đo được giới hạn chỉ để sử dụng với các đại lượng của một loại xác định. Ví dụ, đơn vị đo ‘giây mũ trừ một’ (1/s) được gọi là héc (Hz) khi sử dụng cho tần số và Becquerel (Bq) khi sử dụng cho hoạt độ phóng xạ.

CHÚ THÍCH 3: Đơn vị đo của đại lượng thứ nguyên một là các số. Trong một số trường hợp các số này có tên riêng,  ví dụ radian, steradian và deciben, hoặc được diễn tả bằng các tỷ số như milimol trên mol bằng 10-3 và microgam trên kilogram bằng 10-9.

CHÚ THÍCH 4: Đối với một đại lượng đã cho, thuật ngữ “đơn vị” thường được kết hợp với tên đại lượng, ví dụ “đơn vị khối lượng” hoặc “đơn vị của khối lượng”.

1.10. (1.13)

Đơn vị cơ bản

Đơn vị đo được ấn định bằng quy ước cho đại lượng cơ bản.

CHÚ THÍCH 1: Trong hệ đơn vị nhất quán mỗi đại lượng cơ bản chỉ có một đơn vị cơ bản.

VÍ DỤ: Trong SI, mét là đơn vị cơ bản của độ dài. Trong hệ CGS, centimét là đơn vị cơ bản của độ dài.

CHÚ THÍCH 2: Đơn vị cơ bản cũng có thể dùng cho đại lượng dẫn xuất có cùng thứ nguyên.

VÍ DỤ: Lượng mưa, khi được định nghĩa là thể tích diện tích (thể tích trên diện tích), có mét là đơn vị dẫn xuất nhất quán trong SI.

CHÚ THÍCH 3: Đối với số các thực thể thì số một, ký hiệu là 1, có thể xem là đơn vị cơ bản trong bất cứ hệ đơn vị nào.

1.11. (1.14)

Đơn vị dẫn xuất

Đơn vị đo của đại lượng dẫn xuất.

VÍ DỤ: Mét trên giây, ký hiệu m/s, và centimét trên giây, ký hiệu là cm/s, là các đơn vị dẫn xuất của vận tốc trong SI. Kilômét trên giờ, ký hiệu là km/h, là đơn vị đo vận tốc ngoài SI nhưng được chấp nhận dùng với SI. Knot, bằng một hải lý trên giờ, là đơn vị đo vận tốc ngoài SI.

1.12. (1.10)

Đơn vị dẫn xuất nhất quán

Đơn vị dẫn xuất, đối với một một hệ đại lượng đã cho và một tập hợp các đơn vị cơ bản đã chọn, chính là tích lũy thừa các đơn vị cơ bản với hệ số tỷ lệ bằng một.

CHÚ THÍCH 1. Lũy thừa của đơn vị cơ bản là đơn vị cơ bản được nâng lên số mũ.

CHÚ THÍCH 2: Tính nhất quán có thể được xác định chỉ với một hệ đại lượng cụ thể và một tập hợp các đơn vị cơ bản đã cho.

VÍ DỤ: Nếu mét, giây và mol là đơn vị cơ bản, thì mét trên giây là đơn vị dẫn xuất nhất quán của vận tốc khi vận tốc được định nghĩa bằng phương trình đại lượng v = dr/dt và mol trên mét khối là đơn vị dẫn xuất nhất quán của nồng độ lượng chất khi nồng độ lượng chất được định nghĩa bằng phương trình đại lượng c = n/V. Kilômet trên giờ và knot là ví dụ về đơn vị dẫn xuất nhất quán trong hệ đại lượng đó.

CHÚ THÍCH 3: Đơn vị dẫn xuất có thể là nhất quán với hệ đại lượng này nhưng không là nhất quán với hệ khác.

VÍ DỤ: Centimét trên giây là đơn vị dẫn xuất nhất quán của vận tốc trong hệ đơn vị CGS nhưng không là đơn vị dẫn xuất nhất quán trong SI.

CHÚ THÍCH 4: Đơn vị dẫn xuất nhất quán của mọi đại lượng dẫn xuất thứ nguyên một trong một hệ đơn vị đã cho là số một, ký hiệu là 1. Tên và ký hiệu của đơn vị đo một thường không được chỉ ra.

1.13. (1.9)

Hệ đơn vị

Tập hợp các đơn vị cơ bản đơn vị dẫn xuất, cùng với các ước, bội của chúng, được định nghĩa theo những quy tắc cho trước, của một hệ đại lượng đã cho.

1.14. (1.11)

Hệ đơn vị nhất quán

Hệ đơn vị, dựa trên một hệ đại lượng đã cho, trong đó đơn vị đo của đại lượng dẫn xuất đều là đơn vị dẫn xuất nhất quán.

VÍ DỤ: Tập hợp các đơn vị SI nhất quán và các mối liên hệ giữa chúng.

CHÚ THÍCH 1: Một hệ đơn vị có thể chỉ nhất quán với một hệ đại lượng và các đơn vị cơ bản đã ấn định.

CHÚ THÍCH 2: Đối với một hệ đơn vị nhất quán, các phương trình trị số có cùng dạng, bao gồm các thừa số bằng số, như các phương trình đại lượng tương ứng.

1.15. (1.15)

Đơn vị đo ngoài hệ

Đơn vị ngoài hệ

Đơn vị đo không thuộc một hệ đơn vị đã cho.

VÍ DỤ 1: Electronvon (khoảng 1,602 18 x 10-19 J) là đơn vị đo năng lượng ngoài SI.

VÍ DỤ 2: Ngày, giờ, phút là các đơn vị đo thời gian ngoài SI.

1.16. (1.12)

Hệ đơn vị quốc tế

SI

Hệ đơn vị, dựa trên cơ sở Hệ đại lượng quốc tế, tên và ký hiệu của chúng, bao gồm tập hợp các tiền tố, tên và ký hiệu của tiền tố, cùng với các nguyên tắc sử dụng, do Hội nghị cân đo toàn thể (CGPM) ấn định.

CHÚ THÍCH 1: SI được xây dựng từ 7 đại lượng cơ bản của ISQ, tên và ký hiệu các đơn vị cơ bản tương ứng được cho trong bảng dưới đây.

Đại lượng cơ bản

Đơn vị cơ bản

Tên

Tên

Ký hiệu

Độ dài

mét

m

Khối lượng

kilôgam

kg

Thời gian

giây

s

Cường độ dòng điện

ampe

A

Nhiệt độ nhiệt động lực

kenvin

K

Lượng chất

mol

mol

Cường độ sáng

candela

cd

CHÚ THÍCH 2: Các đơn vị cơ bản và đơn vị dẫn xuất nhất quán của SI tạo thành một tập hợp nhất quán, chính là “tập hợp các đơn vị SI nhất quán”.

CHÚ THÍCH 3: Về sự mô tả và giải thích đầy đủ Hệ đơn vị quốc tế, xem các ấn phẩm mới nhất về SI do Viện cân đo quốc tế (BIPM) xuất bản hoặc trên các trang web của BIPM.

CHÚ THÍCH 4: Trong các phép thử đại lượng, đại lượng “số thực thể” thường được xem là đại lượng cơ bản với đơn vị cơ bản là một, ký hiệu là 1.

CHÚ THÍCH 5: Tiền tố SI cho các đơn vị bội đơn vị ước là:

Hệ số

Tiền tố

Tên

Ký hiệu

1024

yotta

Y

1021

zetta

Z

1018

exa

E

1015

peta

P

1012

tera

T

109

giga

G

106

mega

M

103

kilo

k

102

hecto

h

101

deca

da

10-1

deci

d

10-2

centi

c

10-3

milli

m

10-6

micro

μ

10-9

nano

n

10-12

pico

p

10-15

femto

f

10-18

atto

a

10-21

zepto

z

10-24

yocto

y

1.17. (1.16)

Đơn vị bội

Đơn vị đo nhận được bằng cách chia một đơn vị đã cho với số nguyên lớn hơn một.

VÍ DỤ 1: Kilômét là đơn vị bội thập phân của mét.

VÍ DỤ 2: Giờ là đơn vị bội không thập phân của giây.

CHÚ THÍCH 1: Tiền tố SI cho các bội thập phân của các đơn vị cơ bản đơn vị dẫn xuất SI cho ở chú thích 5 của 1.16.

CHÚ THÍCH 2: Tiền tố SI chỉ dùng để nâng lên lũy thừa 10 và không được sử dụng cho lũy thừa của 2. Ví dụ 1 kilobit không được dùng để thể hiện 1 024 bit (210 bit), đó là 1 kibibit.

Tiền tố của bội cơ số hai là:

Hệ số

Tiền tố

Tên

Ký hiệu

(210)8

yobi

Yi

(210)7

zebi

Zi

(210)6

exbi

Ei

(210)5

pepi

Pi

(210)4

tebi

Ti

(210)3

gibi

Gi

(210)2

mebi

Mi

(210)1

kibi

Ki

1.18. (1.17)

Đơn vị ước

Đơn vị đo nhận được bằng cách chia một đơn vị đã cho với số nguyên lớn hơn một.

VÍ DỤ 1: Militmét là đơn vị ước thập phân của mét.

VÍ DỤ 2: Với góc phẳng, giây là đơn vị ước không thập phân của phút.

CHÚ THÍCH: Tiền tố SI cho các ước thập phân của các đơn vị cơ bản đơn vị dẫn xuất SI cho ở chú thích 5 của 1.16.

1.19. (1.18)

Giá trị đại lượng

Giá trị của đại lượng

Giá trị

Số cùng với mốc quy chiếu thể hiện độ lớn của đại lượng.

VÍ DỤ 1: Độ dài của một cái gậy;

5,34 m hoặc 534 cm

VÍ DỤ 2: Khối lượng của một vật:

0,152 kg hoặc 152 g

VÍ DỤ 3: Độ cong của một cung đã cho:

112m-1

VÍ DỤ 4: Nhiệt độ Celsius của một mẫu:

-5 oC

VÍ DỤ 5: Trở kháng điện của một phần tử mạch ở tần số nhất định, trong đó j là đơn vị ảo:

(7+3j) Ω

VÍ DỤ 6: Chiết suất của một mẫu thủy tinh:

1,32

VÍ DỤ 7: Độ cứng Rockwell C của một mẫu đã cho

(tải 150 kg):

43,5 HRC (150 kg)

VÍ DỤ 8: Tỷ khối của cadimi trong một mẫu đồng đỏ:

3 μg/kg hoặc 3 x 10-9

VÍ DỤ 9: Hàm lượng lượng chất của Pb2+ trong một mẫu nước đã cho:

1,76 μmol/kg

VÍ DỤ 10: Nồng độ lượng chất tùy ý của lutropin trong một mẫu huyết tương đã cho (Tiêu chuẩn quốc tế WHO 80/552):

5,0 Đơn vị quốc tế/l.

CHÚ THÍCH 1: Tùy theo loại quy chiếu, giá trị của đại lượng có thể là:

- tích của một số và đơn vị đo (xem Ví dụ 1, 2, 3, 4, 5, 8, và 9); nói chung đơn vị đo một không chỉ ra cho các đại lượng thứ nguyên một (xem Ví dụ 6 và 8), hoặc

- số và quy chiếu về một thủ tục đo (xem Ví dụ 7),

-  một số và một mẫu chuẩn (xem Ví dụ 10).

CHÚ THÍCH 2: Số có thể là phức (xem Ví dụ 5).

CHÚ THÍCH 3: Giá trị đại lượng có thể được diễn tả theo nhiều cách (xem Ví dụ 1, 2 và 8).

CHÚ THÍCH 4: Trong trường hợp đại lượng vectơ hoặc xentơ, mỗi thành phần có một giá trị.

VÍ DỤ: Lực đang tác động lên một hạt đã cho, ví dụ theo các thành phần của hệ tọa độ đêcac (Fx;Fy;Fz­) = (-31,5; 43,2; 17,0) N.

1.20. (1.21)

Trị số đại lượng

Trị số của đại lượng

Trị số

Số trong biểu thức giá trị đại lượng, khác với số sử dụng làm mốc quy chiếu.

CHÚ THÍCH 1: Đối với các đại lượng thứ nguyên một, mốc quy chiếu là một đơn vị đo, đó là một số và số này không được xem là một phần của trị số đại lượng.

VÍ DỤ: Trong một phần lượng chất bằng 3 mmol/mol, trị số đại lượng là 3 và đơn vị là mmol/mol. Đơn vị mmol/mol về mặt số bằng 0,001 nhưng số 0,001 này không là một phần của trị số đại lượng, trị số này là 3.

CHÚ THÍCH 2: Đối với các đại lượng có đơn vị đo (nghĩa là khác với đại lượng thứ tự), trị số {Q} của đại lượng Q thường được biểu diễn là {Q} = Q/[Q], trong đó [Q] biểu thị đơn vị đo.

VÍ DỤ: Đối với giá trị đại lượng 5,7 kg, trị số đại lượng là {m} = (5,7 kg)/kg = 5,7. Giá trị đại lượng này có thể diễn đạt là 5 700 g, trong trường hợp này trị số đại lượng {m} = (5 700g)/g = 5 700.

1.21.

Phép tính đại lượng

Tập hợp các quy tắc và phép toán áp dụng cho đại lượng khác với đại lượng thứ tự.

CHÚ THÍCH: Trong phép tính đại lượng, các phương trình đại lượng được ưu tiên hơn các phương trình trị số vì phương trình đại lượng độc lập với việc chọn đơn vị đo, trong khi các phương trình trị số thì không (xem TCVN 6398-0:1998, 2.2.2).

(Mời xem tiếp trong file tải về)

Tiêu chuẩn Việt Nam TCVN 6165:2009

Tiêu chuẩn Quốc gia TCVN 6165:2009 ISO/IEC GUIDE 99:2007 Từ vựng quốc tế về đo lường học-Khái niệm, thuật ngữ chung và cơ bản (VIM)
Số hiệu:TCVN 6165:2009Loại văn bản:Tiêu chuẩn Việt Nam
Cơ quan ban hành: Bộ Khoa học và Công nghệLĩnh vực:Khoa học-Công nghệ
Năm ban hành:2009Hiệu lực:
Người ký:Tình trạng hiệu lực:
Đã biết

Vui lòng đăng nhập tài khoản gói Tiêu chuẩn hoặc Nâng cao để xem Tình trạng hiệu lực. Nếu chưa có tài khoản Quý khách đăng ký tại đây!

tải Tiêu chuẩn Việt Nam TCVN 6165:2009

Vui lòng Đăng nhập tài khoản gói Tiêu chuẩn hoặc Nâng cao để xem VB liên quan.

Chưa có tài khoản? Đăng ký tại đây

Vui lòng đăng nhập tài khoản gói Tiêu chuẩn hoặc Nâng cao để xem Lược đồ.
Nếu chưa có tài khoản Quý khách đăng ký tại đây!
* Lưu ý: Để đọc được văn bản tải trên Luatvietnam.vn, bạn cần cài phần mềm đọc file DOC, DOCX và phần mềm đọc file PDF.

Để được giải đáp thắc mắc, vui lòng gọi

19006192

Theo dõi LuatVietnam trên YouTube

TẠI ĐÂY

Vui lòng đợi